耶鲁大学研制单片集成的百光子数探测器
封面图:片上百光子数探测器示意图
近日,耶鲁大学唐红星教授课题组利用独特的时空复用方案,实现了100像素的百光子数可分辨探测器,并将该芯片用于光子数统计分布的测量。
该团队在4mm×1mm的微小硅光芯片上集成了100个超导纳米线阵列,每个纳米线之间用延时高达1ns的微波延迟线相连,因此即使很多个纳米线同时被光子激发,读出电路依然可以用时间复用的方法分辨被激发纳米线的数量和位置,从而实现了最高达100的光子数分辨率。
该成果发表在Nature Photonics,标题为“A 100-pixel photon-number-resolving detector unveiling photon statistics”。耶鲁大学的成日盛博士和周宜雨博士为论文的共同第一作者。

图源:Nature Photonics

图2:片上探测器实物图
通过示波器进行多次测量累积得到的眼图如图3所示。图中可以看出和100个纳米线探测器相对应的100个分立的电脉冲,通过测量电脉冲的个数和到达时间,可以分辨对应的被激发纳米线的数量和位置,从而获得光子计数。

图3:示波器眼图
热光场是常见的一种光量子态。由于传统单光子探测器不具备光子数分辨率,因此在量子光学实验中,往往采用旋转的毛玻璃来产生相干时间远大于探测器恢复时间的赝热光场,从而牺牲探测器的时间分辨率来间接获得光子数分辨率。
相比之下,非人造的真热光场,例如太阳光或者放大器自发辐射等,往往具有极短的相干时间,因此需要同时具备高时间分辨率和光子数分辨率的探测器才能进行测量。
该团队利用掺铒光纤放大器(EDFA,erbium-doped fiber amplifier)的自发辐射作为真正的热光源,先经过光频滤波器滤波,然后再采用电光调制器来将连续光调制成脉冲宽度可调的脉冲光,最后用百光子数探测器进行探测。通过调节脉冲宽度,可以实现从单模热光场到多模热光场的转变,相对应的光子统计分布也会从玻色-爱因斯坦分布转变成泊松分布,实验的测量结果如图4所示。

图4:真热光源的光子数统计分布。通过调节脉冲宽度,光量子态从单模热光场(对应玻色-爱因斯坦分布)转变成多模热光场(对应泊松分布)。
由于该探测器不仅可以获得光子数信息,还可以测量对应被激发的纳米线的位置信息,因此可以将100个纳米线任意地分成N组,从而直接测量高阶关联函数g(N)。
该团队针对激光器产生的相干光,和EDFA产生的单模/多模热光场进行了测量,测量结果如图5所示。受限于示波器的数据读取速率,本实验中最高只测量到了g(15)。如果采用专用的超高速脉冲计数器实现更快的数据采集,进而缩短测量时间,显著提升信噪比,则用该探测器理论上可以实现g(100)的测量。
通过采用具有更高介电常数的材料(例如SrTiO₃)作为微波延迟线的介质,可以使得用更短的延迟线实现更长的微波延时,进而有可能在差不多的芯片面积将1000个纳米线以及延迟线串联起来,在片上实现千光子数探测器。
另外由于该探测器已和光波导实现了集成,可以对光波导内的光子进行探测,因此有望进一步和片上量子光源以及量子光路集成在一起,从而大幅降低芯片和光纤之间的耦合损耗,并可以减小芯片尺寸,实现高度的系统集成化。
该工作有望大幅促进量子光学实验的进展,并且能在玻色采样等量子模拟、光量子计算,量子通信和量子精密测量等实验中直接找到应用。
https://doi.org/10.1038/s41566-022-01119-3
免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。