前沿 | 深度学习赋能活细胞超分辨成像

论文题目 | Ensemble deep learning-enabled single-shot composite structured illumination microscopy (eDL-cSIM)
作者 | 钱佳铭,王春耀,吴洪军*,陈钱*,左超*
完成单位 | 南京理工大学智能计算成像实验室,南京理工大学智能计算成像研究院,江苏省视觉传感与智能感知重点实验室




2. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).
3. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc.Natl. Acad. Sci. 97, 8206–8210 (2000).
4. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500–aab3500 (2015).
5. Chen, X. et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. LightSci. Appl. 12, 172 (2023).
6. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7, 10980 (2016).
7. Qian, J. et al. Structured illumination microscopy based on principal component analysis. eLight 3, 4 (2023).
8. Wu, H. et al. Single-frame structured illumination microscopy for fast live-cell imaging. APL Photonics 9, 036102 (2024).
9. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18, 194–202 (2021).
10. Fan, J. et al. High-Fidelity Reconstruction of Structured Illumination Microscopy by an Amplitude-Phase Channel Attention Network With Multitemporal Information. IEEE Trans. Instrum. Meas. 72, 1–13 (2023).
免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。