Menu产品中心激光器飞秒超快激光Class5多光子显微成像激光Coherent飞秒超快激光器AVESTA飞秒激光器Menhir高重频低噪声飞秒Fluence飞秒光纤激光器Lithium紧凑型高功率飞秒ActiveFiber高功率飞秒光纤SolarLaser全固态飞秒Laser Quantum飞秒激光器SourceLAB超强激光等离子体Prospective多光子成像飞秒FSXCycle超快激光时间同步Amplitude超快激光器neoLASE工业超快激光Fibercryst飞秒光纤放大Chromacity超快光纤激光器IMRA超快光纤激光器Fastlite超快激光系统LaserFemto飞秒光纤激光Litilit飞秒光纤激光KMLabs超快X射线光源Viulase钛宝石飞秒激光器皮秒纳秒激光HiLASE高能量皮秒激光Passat皮秒纳秒激光器Irisiome皮秒光纤激光器FYLA超连续谱超快激光器LotisTII可调谐皮秒激光Refined可调谐皮秒激光Sirah高重频纳秒染料激光器QLI可调谐纳秒激光器Excelitas光学参量振荡器CW-OPOALS皮秒激光器PILAS可调谐激光器Santec波长可调谐激光器Radiantis超快OPO系统Stuttgart中红外OPOSuperlum扫频可调谐半导体激光器GouMax光通信测试仪表Spectrolight光电子器件扫频激光器OCTLIGHT高速扫频激光器Axsun高速扫频激光器Optores扫频激光器光纤激光器AdValue光纤激光器NP Photonics光纤激光器Azurlight超高功率单频激光器MW Technologies光纤激光器Optromix光纤激光器Alnair Labs光纤激光器Amonics 1550nm光纤放大器Lumibird光纤激光器超连续中红外Leukos超连续谱激光器Novae中红外超短脉冲激光Femtum中红外飞秒光纤激光紫外光源CryLaS紫外激光器Oxide紫外激光器量子级联激光器Block Engineering量子级联激光Pranalytica高功率量子级联激光Alpes Lasers量子级联激光稳频激光器Stable Laser Systems稳频激光器DMF Stabiλaser超稳频激光固体半导体Excelitas二极管激光器iFLEXSkylark高功率窄线宽激光器Muquans激光冷原子测量MOGLabs半导体激光器Toptica半导体激光器Lighthouse二极管泵浦绿色激光器Aerodiode激光二极管及驱动器QPhotonics激光二极管Superlum超辐射发光二极管SLDLaser Quantum固体连续激光白光气体光源Energetiq激光驱动白光光源Plasma气体激光器Lumencor显微镜光源ISTEQ等离子体光源Synrad Firestar i401 CO2激光器Asahi氙灯光源自适应光学变形镜ALPAO自适应光学模态控制可变形镜高速可变形镜大口径高速连续变形镜波前传感器自适应闭环软件自适应光学系统OKO自适应光学可变形镜PDM MMDM波前传感器自适应光学系统Dynamic Optics自适应光学Dyoptyka散斑抑制变形镜NightN自适应光学可变形镜-超高功率激光波前传感器光学表面形貌测试仪HION斐索干涉仪RIF人眼像差仪ISP SYSTEM精密光学控制Boston自适应光学Microgate自适应光学Phaseform透射式变形镜ROBUST AO变焦反射镜波前传感器法国Phasics波前传感器波前传感器SID4波前传感器SID4-SC8s生物显微定量相位成像SID4-Bio超高真空度波前传感器SID4-VKaleo MultiWAVE多波长干涉仪Kaleo MTF测试平台PhaseView生物显微测量空间光调制器Santec空间光调制器Holoeye空间光调制器PLUTOJENOPTIK一维空间光调制器Holoeye空间光调制器GAEAHamamatsu空间光调制器ViALUX数字微镜阵列DMD干涉仪传函仪Difrotec点衍射激光干涉仪OEG光学传递函数MTF湍流模拟器Lexitek湍流模拟相位板SURISE热风式大气湍流模拟器SURISE液晶大气湍流模拟器光场调控器件RPC涡旋相位板ARCoptix可变螺旋板Q-PLATELC-TEC液晶高速光开光常用仪器相机CMOSXenics红外相机Allied Vision红外相机Raytrix 3D光场相机PHOTONIS相机TELOPS红外热像仪NAC高速摄像机Phantom超高速相机Hamamatsu CMOS相机NUVU背照式EMCCD相机FirstLight高速近红外EMCCDDouble Helix Optics深度相机AOS高速相机PCO科学相机Axis超快条纹相机量子信息光学Zurich量子测控Intermodulation微波合成分析QBLOX量子比特控制Swabian时间相关单光子计数Maybell稀释制冷机Basel低噪声超稳定电子设备Excelitas光子探测器UQDevices多光子计数FLIM LABS荧光寿命成像Photonscore光子计数Pi Imaging单光子相机Sparrow单光子源FEMTO低噪声放大器Qusine高精度信号合成器光纤光电器件AOS光纤布拉格光栅Gooch Housego光电器件iXblue电光调制器LUNA光纤传感通信GLOphotonics光子晶体光纤Alnair Labs光学滤波器大气天文探测Miratlas一体化大气监测仪ALCOR SYSTEM天文仪器Plair环境监测系统VOYIS海洋水下探测Bertin天文仪器仪表振镜激光调控SCANLAB扫描振镜EOPC光学扫描系统LINOS激光场镜Cambridge MOVIA振镜Cambridge共振型扫描振镜CRSSill Optics激光场镜MRC激光稳定系统Mirrorcle微扫描镜PLS高速多边形扫描仪光束分析测量Duma光束质量分析仪Liquid多功能测量仪Duma自准直仪HighFinesse波长计Bristol激光波长计数据采集处理Licel数据采集系统AlazarTech高速数据采集处理Spectrum高速数字化仪AMPI刺激器Alnair Labs电脉冲发生器Keysight电子测量与分析仪器AnaPico射频微波信号分析与测量D-TACQ高性能同步数据采集红外光谱ARCoptix红外光谱仪PhaseTech二维红外光谱仪NLIR中红外传感器Optogama红外观察仪IR ViewerEMO高性能红外观测仪超快测量整形Swamp Optics超短脉冲测量FemtoEasy超快测量PhaseTech飞秒光谱脉冲整形n2 Photonics飞秒脉冲压缩few cycle超快激光技术Amonics超短脉冲分析仪太赫兹Lytid太赫兹技术磁场分析测量Metrolab磁场测量光学元器件光栅few cycle超快啁啾镜Wasatch OCT光栅光谱OptiGrate布拉格光栅Spectrogon光栅滤光片Layertec滤波片Alluxa超窄带滤光片Chroma滤光片Andover带通滤光片Acton紫外衰减片Ondax光学元件Spectrogon滤光片Asahi滤光片反射镜镀膜Layertec超快激光反射镜VIAVI高功率大尺寸光学元件镀膜Acton紫外光学元件OptoSigma超级反射镜Optoman超快激光反射镜B.Halle光学元件波片支架转台Lexitek电动旋转台Prior纳米定位压电平台Piezoconcept纳米定位器其他常用光学表面清洁剂First Contact大型仪器显微系统LyncéeTec数字全息显微镜反射式数字全息显微镜DHM-R透射式数字全息显微镜DHM-TFemtonics多光子显微镜Prospective多光子显微镜Lumicks光镊荧光Lumicks m-Trap光镊Lumicks C-Trap光镊自动化机械ISP精密自动化机械设备微纳加工WOP飞秒激光微加工系统LasernanoFab微纳加工系统加速质谱仪HVE离子束和电子束设备HVE加速器质谱仪HVE离子加速器系统Ionplus加速器质谱仪低能量碳十四小型加速器质谱系统LEA放射性碳定年小型加速器质谱系统MICADAS多核素低能量小型加速器质谱系统MILEA light多核素低能量小型加速器质谱系统MILEA半导体设备Plassys薄膜沉积和蚀刻设备Picosun原子层沉积TSST脉冲激光沉积Sentech等离子刻蚀原子层沉积MBE分子束外延设备Plasma-Therm半导体刻蚀光伏设备WEP电化学ECV掺杂浓度检测pv-tools接触电阻测试仪Horiba椭圆偏振光谱仪Sinton少子寿命测试仪Horiba氧/氮/氢分析仪合作自营赋同量子超导纳米线单光子探测北京卓镭超快激光TINY系列Nd:YAG 纳秒激光器BLAZER系列中高功率超快皮秒激光器LAMBER系列纳秒激光器国盾量子科学仪器国盾量子高亮度纠缠源国盾量子高速近红外单光子探测器国盾量子高速皮秒脉冲激光器国盾量子可见光波段单光子探测器SURISE热风式大气湍流模拟器SURISE液晶大气湍流模拟器SURISE夏克-哈特曼波前传感器SURISE全息光镊系统SURISE飞秒激光频率梳SURISE高性能激光器SURISE高时间对比度TW/PW激光系统SURISE数字微镜阵列DMDSURISE大气光学参数测量仪SURISE光学仪器专用干燥柜解决方案自适应光学多光子显微成像光学相干层析成像OCT大气湍流大气激光雷达量子光学合作伙伴 首页 行业新闻 Light | 超分辨结构光照明显微重建算法的历史演变 Light | 超分辨结构光照明显微重建算法的历史演变 撰稿 | 陈欣,席鹏 说明 | 本文来自论文作者(课题组)投稿 摘要 迄今为止,结构光照明超分辨显微成像技术(SIM)的硬件和软件得到了蓬勃发展,成功应用于各种生物学问题。然而,要充分发挥SIM系统硬件的潜力,开发先进的重建算法是不可或缺的。为了帮助用户选择适用于特定应用的合适算法,对现有的SIM重建算法进行了综述和比较。同时,对SIM潜在未来发展进行展望,有望推动该领域的进一步发展。 正文 SIM 最初是作为准共聚焦的方法用于去除厚样本中不同垂直图像平面贡献的散焦信息,又被称为光学切片SIM技术(OS-SIM)。随后,为了满足对亚细胞器的精细结构和细胞器之间的相互作用研究日益增长的需求,人们开发了能够超出光学衍射极限限制的超分辨SIM技术(SR-SIM)。如图1所示,随着硬件和软件的不断发展, SR-SIM技术已经称为下一代宽场显微成像技术的新标准,主要是因为它具备超高成像速度(>500帧/秒),超分辨率(<100纳米),大视场(>200 微米)和长时程成像(>1 小时)等出色的能力。值得注意的是,要充分发挥SIM系统硬件的潜力,需要开发先进的重建算法。 图1 超分辨SIM技术发展的重要历程 在最近发表在《Light: Science & Applications》期刊的一篇综述论文中,由中国北京大学未来技术学院生物医学工程系、北京大学国家生物医学成像中心的席鹏教授领导的科研团队,对SIM技术的进展,尤其是SR-SIM 重建算法进行了全面的综述。这篇论文总结并对比了各种典型的SIM算法,给出了详细的分析结果,便于用户能够在选择适用于特定场景中的合适算法时做出明智的选择。此外,研究人员还提供了对SIM技术未来发展潜力的展望,希望能够促进该领域的进一步发展。 SIM 技术基于莫尔条纹原理,利用一系列正弦激发照明模式对未知样本进行照明。发射光包含了在衍射受限图像中观察不到的样本的精细结构信息并被物镜采集。随后,通过采用一系列SIM重建过程来提取这些未知的样本信息。根据激发照明模式中的谐波级数,SIM可以分为线性SIM和非线性SIM。 SIM 实施方式: 以线性SIM为例 OS-SIM: 为宽场显微镜添加光学切片功能 (1)照明模式:单频格点图案、规则点阵、方形和六角形,及动态散斑照明 (2)采集原始图像数量:多帧、两帧和单帧 图2 OS-SIM执行模态原理图 a 混合散斑和均匀照明显微镜(HiLo),b 线照明调制显微镜(LiMo),c 偏振照明编码结构光照明显微镜(picoSIM) SR-SIM: 实现单方向或双方向的超分辨显微成像 (1)二维 SIM(2D-SIM, 也称为双光束 SIM): 利用带有横向或者轴向调制的结构化照明模式,分别提高系统相应的横向或轴向分辨率。 (2)三维 SIM(3D-SIM, 也称为三光束 SIM): 三束相干光载样本中干涉,形成横向和轴向变化的照明模式,从而同时提高系统的横向和轴向分辨率。 (3)四光束干涉(3D-SIM 家族): 通过直接在样本对面放置反射镜,实现四光束干涉。这进一步提高了3D-SIM本身在轴向上的分辨率。 (4)六光束干涉(3D-SIM 家族): 将3D-SIM照明系统与两个相对物镜几何结构相结合,实现六光束干涉。这进一步提高了3D-SIM本身在轴向上的分辨率。 图3 SR-SIM执行模态示意图 a SR-SIM系统原理图:b 2D-SIM,c 3D-SIM,d 四光束干涉,e 六光束干涉 SR-SIM 重建算法的发展 SR-SIM的重建过程如图4所示。首先,对原始图像进行图像处理,以提高信噪比(SNR)。接下来,如果不需要参数估计,则可以采用盲SIM重建算法。然而,如果需要参数估计,则可以在傅里叶域和空域中进行重建。此外,还可以利用基于正则化的迭代优化方法来增强重建结果对噪声的鲁棒性。以下是每个部分的发展趋势总结: 图 4 SR-SIM重构过程示意图 参数估计 精确估计周期性照明模式信息,包括照明频率矢量、相位和调制深度。 (1)迭代搜索 : 交叉相关(COR):具有鲁棒性和高精度,但计算时间较长。 (2)非迭代搜索: 自相关(ACR)、相位峰值(POP)、图像重组变换(IRT):在原始图像具有低SNR或调制深度较弱时无法保证估计的精度。 主成分分析SIM(PCA-SIM):在低SNR情况下能够快速且鲁棒地估计,其精度与COR相当。 傅里叶域重建(FDR)算法:简单且快速 最初的FDR算法基于广义维纳滤波提出的。随后,提出了各种改进的FDR算法,包括: 光学像差抑制:基于RL的去卷积、高保真SIM、块重建等。 对低SNR情况具有鲁棒性:海森SIM、二阶最优正则化SIM、稀疏SIM、多分辨率分析(MRA)去卷积等。 提高重建速度:减少原始图像帧数、滚动重建、GPU加速等。 空域重建 (SDR) 算法:比FDR 算法速度更快 最近提出了SDR重建算法。它与FDR算法需要相同数量的原始图像,但不需要进行傅里叶变换操作。 盲SIM重建算法:对畸变的照明模式具有鲁棒性 该方法的重建速度比FDR和SDR重建方法慢了几个数量级。 此外,该论文还总结了现有的开源SR-SIM重建算法,并讨论了它们的特点和应用范围,旨在帮助读者选择适用于其需求的相关重建工具。 结合深度学习技术 近年来,研究人员开始探索利用深度卷积神经网络(CNN)提升SR-SIM在空间/时间分辨率、图像深度和成像速度方面的潜力。其中一些技术包括: 对噪声鲁棒性的增强 生成对抗网络(GNA)模型 基于U-Net的框架(例如U-Net-SIM15) 残差编码-解码卷积神经网络(RED-Net) 理性化深度学习(rDL) 提高重建速度 基于U-Net的框架(例如U-Net-SIM3) 深度傅里叶通道注意力网络(DFCAN)及其衍生物DFGAN 循环一致生成对抗网络(cycleGAN) 通道注意力生成对抗网络(caGAN) 总结 商业SIM系统的比较 该论文还从系统分辨率、成像速度、成像视场和多色成像能力等因素对几种代表性的商业SIM系统进行了总结和比较,比如,德国Zeiss Elyra7、日本Nikon N-SIM S和中国Airy Polar SIM。这些信息将帮助用户根据其特定应用选择合适的系统。 结论和展望 (1)结论 概述了OS-SIM和SR-SIM的实现方式。 深入探讨了SR-SIM重建算法的发展,并对各类别中具有代表性的方法进行了比较。 总结了SIM与其他技术的各种组合,以优化成像策略来获得更好的重建质量。 (2)展望 与2D-SIM相比,3D-SIM重建需要更复杂的硬件设置和更多的原始图像。需要开发新的系统和重建算法来简化3D-SIM的实验约束并加快重建速度。 较快的成像速度意味着信号累积时间更短、获得的图像信噪比更低。基于正则化的迭代优化方法可能更适合,但需要进一步优化,以减少在不同样本上进行参数调整的需要,使其对初学者更加方便。 虽然SDR算法可以通过GPU加速实现动态测量,但其重建质量目前还不如FDR结果。探索SDR算法的潜力并开发新的算法有助于填补差距并提高成像速度。 深度学习超分辨率图像所传达的信息能在何种程度上用于定量分析,以及在何种条件下这些方法优于传统超分辨率显微镜,目前还不清楚。结合物理模型可以减少不确定性并提供物理上可行的推断,从而弥合基于深度学习和基于物理模型的模型之间的差距。 论文信息 该成果发表在《Light: Science & Applications》,题为“Superresolution structured illumination microscopy reconstruction algorithms: a review”。 论文地址 https://www.nature.com/articles/s41377-023-01204-4 免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。 14个机构63位学者合作 AI for Science 重磅综述:用于量子、原子和连续体系科学的人工智能 Science长文综述:什么是科学学 Light杰青作者优秀论文展(8) Light: Science & Applications | 火焰动力学和温度超快平面光谱成像方法研究 [文献速递Vol.215]-SNR-Net OCT:通过深度学习对低光光学相干断层扫描图像进行增亮和去噪 Light人物 | 专访牛津大学Martin Booth教授——谈自适应光学的广泛应用 Light杰青作者优秀论文展(7)